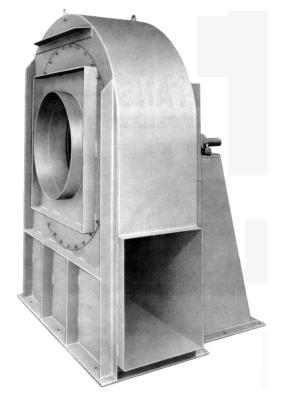
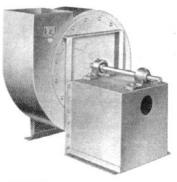
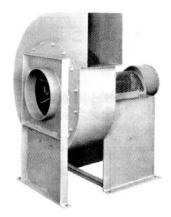

TAHVIEH HAMOON

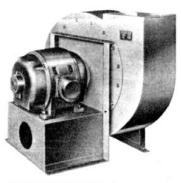
INDUSTRIAL RADIAL FANS


QUICK REPLACEABLE IMPELLER



FOR


- . INDUSTRIAL EXHAUST SYSTEMS
- . MATERIAL HANDLING
- . TEXTILE ENGINEERING APPLICATIONS
- . DUST COLLECTION SYSTEMS
- . INCINA RATORS



ARRANGEMENT NO. 1—For belt drive wheel overhung, two bearings mounted on pedestal.

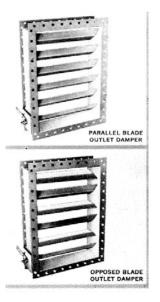
ARRANGEMENT NO. 4—For direct drive wheel overhung on motor shaft.

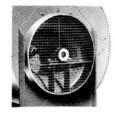
STRONG AIR IS OUR BUSINESS

... Versatile, durable centrifugal fans designed for industrial moving and light material handling applications... Performance __ 14" through 85" wheel diameters offer capacities to 86,900 CFM with static pressure to 20" WG Stability __ operates smoothly from wide – open to closed – off.

Temperatures to 800F __ see page 5 for construction details.

Wheels__ non - clogging radial design.


WHEEL DESIGNS


T.H. wheel__ available in size 144 through 854...flat radial blade design... ideal for pneumatic conveying of particulate matter, coarse material, and sticky or heavy dust.


INDUSTRIAL PROCESS APPLICATION

The series TAHVIEH HAMOON industrial fan is manufactured in a wide choice of sizes, arrangements and special duty wheel types to meet the air volume, pressure and temperature requirements for all types of industrial process up – plications. Ruggedly built, these fans are designed for trouble – free continuous duty when operating under the most severe conditions required for material handling or for exhausting hot, dirty fumes or gases.

WHEELS Three basic wheel types are available to meet various field requirements. All wheels are inter – changeable in the same fan housing and are readily re – movable through the sides of the fan housing. Wheels are continuously welded to provide a rigid, durable assembly and can be furnished in both standard and extra heavy construction. For spark resistant, corrosion or other spe – cial applications, wheels can be furnished in stainless steel, model, bronze, brass or aluminum. When required, wheels can also be coated with special corrosion and heat resistant paints, or a variety of other finishes for lasting performance under the most severe conditions. HOUSINGS Hosing for TAHVIEH HAMOON Industrial fans are fabricated from heavy side sheets continuously welded to scroll sheet to provide gas – tight sturdily constructed assembly. Sizes 9 through 36 are rotatable and convert – ible as to discharge; larger sizes have fixed discharge. Inlets and outlets are designed for slip connections, but when required, can be flanged and punched for convenient bolting. Housings fabricated from stainless steel, monel, bronze, brass or aluminum are also available.

MODIFICATIONS

TAHVIEH HAMOON fan can be modified or furnished with accessory equipment to meet many special conditions or requirements.

INLET VANE DAMPERS

Inlet van dampers can be furnished to provide an effective means of reducing or regulating air volume flow when required. Dampers can be furnished for manual or automatic control.

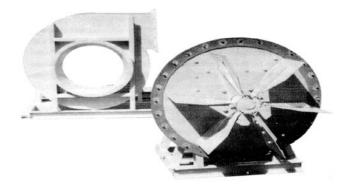
OUTLET DAMPERS

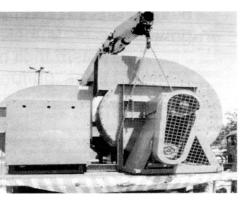
Outlet dampers can be furnished in number of types for regulating air volume. Types available are: single blade, parallel or opposed acting. Streamlined, parallel or opposed acting.

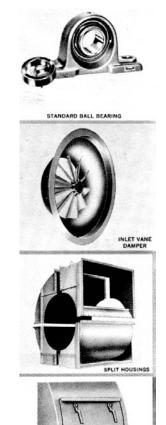
ACCESS DOORS

Two types of access doors are available for cleaning of fan wheel and scroll. A quick release door is recommended where frequent cleaning is necessary.

SHAFT COOLING WHEEL


Shaft cooling wheels can be furnished for high temperature application to protect the inboard bearing from radiated head from the fan housing and convected heat from the shaft.


INLET SCREENS


Accessory inlet screens of 1½" mesh wire are available where there is no duct connected to the fan inlet. Screens are bolted to the fan inlet for easy removal.

VIBRATION BASES

Vibration bases are available in a number of types to provide an efficient method of isolating fans and motors, thereby reducing the transmission of vibration to the building structure.

SPECIAL APPLICATIONS __ HEAT FAN ENGINEERING

HANDLING CORROSIVES

Corrosion problems may result when the air being handled contains one or more Chemicals which are corrosive in nature. The extent of the corrosion problem, however, is dependent upon the specific properties of each of the chemicals and the resulting mixture, the concentrations, and the mixture. Many types of protective coatings and special construction are available to combat corrosion problems.

Special metal construction __ **HT** fans can be constructed of aluminum or various stainless steels.

Thin film coatings (5 to 10 mil thickness) __ special paints and spray coating are available under a variety of trade names. T.H works with coating applicators who can supply most brands or their equivalents. Standard TH fans with all – welded construction are especially suited to these coatings.

HEAT FAN ENGINEERING

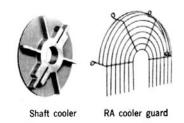
GI fans may be modified for operation at elevated temperatures. For successful operation, consideration must be given to decreased material strength at various temperatures. The chart below gives applicable safe speeds.

Maximum temperatures for each arrangement are given on page 4. Heat fan modifications include shaft coolers and modifications include shaft coolers and guards on all arrangements and motor heat shields for arrangement 9 and 10.

Aluminum shaft coolers are designed to move ambient air over the inboard bearing and dissipate heat transferred through the fan shaft.

CHART1
MAXIMUM SAFE SPEEDS FOR WHEELS
AT VARIOUS TEMPERATURES (mild steel)

	70°-				
size	400°	500°	600°	700°	800°
144	4605	4448	4328	4200	3742
174	3745	3618	3520	3415	3055
224	2635	2545	2477	2403	2150
264	2280	2202	2143	2079	1860
294	1995	1927	1875	1819	1628
334	1850	1787	1739	1687	1510
364	1670	1613	1570	1523	1363
404	1490	1439	1400	1358	1216
454	1325	1279	1245	1208	1081
504	1185	1145	1114	1081	967
574	1040	1004	977	948	848
644	930	898	874	848	759
714	840	811	790	766	685
784	765	738	719	698	624
854	700	676	658	638	571


CHART II

MAXIMUM SAFE SPEED FACTORS
FOR ALLOY WHEEL CONSTRUCTION

FOR ALLOT WHEEL CONSTRUCTION											
Meterial	70°	200°	300°	400°	500°	600°	700°	800°			
Aluminum	1.00	0.97	_	_	ı	ı	ı	_			
304											
Stainless	1.00	0.89	0.82	0.78	0.75	0.73	0.71	0.70			
316											
Stainless	0.95	0.90	0.88	0.86	0.83	0.80	0.78	0.77			
347											
Stainless	1.00	1.00	0.99	0.97	0.97	0.97	0.97	0.96			

Factors shown in chart 1 should be applied to the maximum safe speeds shown in the 70° - 400°

column of chart III as the tinted area indicates.

HOW TO USE CAPACITY TABLES

For a given fan size. Wheel design, CFM, and static pressure; capacity tables can be used to obtain outlet velocity, wheel RPM and BHP. If capacities are at conditions other than 70° F, sea level or standard density (0.75 lbs./CU.FT.), correction factors must be applied to static pressure and BHP.

- 1. Select size, RPM and BHP of fan from capacity table.
- 2. If temperature or altitude is involved, correct for air density (see charts III and IV).
- 3. Check the maximum safe speed of the fan at the operating temperature as shown in chart I.
- 4. All ratings shown between the gray lines on capacity tables are within five percent of maximum mechanical efficiency.
- 5. BHP shown includes bearing drag on smaller sizes where such drag is significant.

EXAMPLE: size 224 fan, wheel, and heat fan to furnish 1860 CFM at 5" SP at 600°F. At 0.075 lbs./cu .ft density.

- 1. Chart III gives a 2.00 factor for 600° F.
- 2. 5" SP * 2.00 = 10" SP at 70° F.
- 3. Capacity tables shoe 1876 RPM, 5.25 BHP for 224 at 1860 CFM at 10" SP at 70 °F.
- 4. Divide BHP and SP by the temperature factor.

$$10 \div 2.00 = 5$$
" SP $5.25 \div 2.00 = 2.63$ BHP

- 5. Actual performance: 1860 CFM at 5" SP at 1876 RPM at 2.63 BHP at 600° F.
- 6. Check safe speed for standard size 224 at 600° F. (chart I on page 5). RPM shown is 2477. Fan is satisfactory for operation at 600° F.

CALCULATING FANS AT ALTITUDES OTHER THAN SEA LEVEL { 29.92 in.}

If speed, capacity and temperature are kept constant, static pressure and horsepower will vary directly as the density of the air. The method for correcting for altitude is the same as for temperature except using the factors in chart VI instead of chart V.

CHART VIII CORRECTION FACTOR FOR TEMPERATURE (°F)

Temp	Factor	Temp	Factor	Temp	Factor	Temp	Factor	Temp	Factor
-50°	.77	80°	1.02	225°	1.29	400°	1.62	750°	2.28
-25°	.82	100°	1.06	250°	1.34	450°	1.72	800°	2.38
0°	.87	120°	1.09	275°	1.39	500°	1.81		
20°	.91	140°	1.13	300°	1.43	550°	1.91		
40°	.94	160°	1.17	325°	1.48	600°	2.00		
60°	.98	180°	1.21	350°	1.53	650°	2.10		
70°	1.00	200°	1.25	375°	1.58	700°	2.19		

CHART IV

CORRECTION FACTORS FOR ALTITUDE (FEET ABOVE SEA LEVEL)

A	Alt.	Factor	Alt.	Factor	Alt.	Factor	Alt.	Factor	Alt.	Factor
0		1.00	2000	1.08	4000	1.16	6000	1.25	8000	1.35
5	00	1.02	2500	1.10	4500	1.18	6500	1.27	8500	1.37
1	000	1.04	3000	1.12	5000	1.20	7000	1.30	9000	1.40
1:	500	1.06	3500	1.14	5500	1.22	7500	1.32	10000	1.45

NOTE: if correction factor for temperature and altitude is required, multiply factors from charts III and VI together: 3000° F. 1.12*2.00 = 2.24 (combined factor).

ARRANGEMENTS

ARRANGEMENTS 1

Suitable for V-belt drive ... provides a wide range of V-belt drive and motor combinations.

Maximum temperatures: standard fan - 300° F, heat fan - 800° F.

Heat fan construction includes shaft cooler and cooler guard.

ARRANGEMENT 9

Provides a fan , motor and V – belt drive combination in an integral unit . . . built to same dimensional specifications as arrangement 1, but with motor slide base mounted on right or left side of fan pedestal.

Maximum temperatures: standard fan - 300° F, heat fan - 600° F.

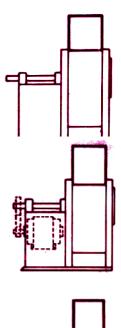
Heat fan construction includes shaft cooler, cooler guard and motor heat shield.

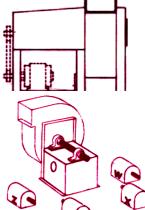
When ordering arrangement 9 fans. Complete motor and drive information is necessary to locate motor slide rails.

Available with LS wheel only in Sizes 144 through 294.

Offers fan, motor, and drive in one compact, easy – to – install and maintain packaged assembly.

Maximum temperatures: standard fan - 200° F, head fan - 600° F.


Heat fan construction includes shaft cooler, cooler guard and motor heat shield. . .


MOTOR POSITION DESIGNATION

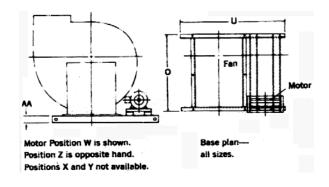
Drawing at left shows AMCA motor position designations for Arrangement 1 fans. These designations are required when ordering:

1. V-belt drives. 2. Vibration bases and unitary bases. 3. Belt guards.

Motor positions are independent of fan rotation and discharge positions and are determined by viewing fan from drive and selecting W, X, Y or Z.

MATERIAL SPECIFICATIONS

U.S STANDARD SHEET GAUGE TO 7 GAUGE _ DIMENSIONS IN INCHES


		Housing				Bearing base Shaft diameter				Wheels								
	Bare		Side				Arr.1	and 9	and bearing		ng type	Bla	ades					
SIZE	fan		plat	tes	inlet	Scroll	Side	Base	LS					DH	DH		WR ²	
	weight	sheets	Drive	Inlet	Collar	SCIOII	sheets	flange	Arr.1		Arr.10	LS	DH	front	black	Wt.	lb. ft.²	
	(lbs.)		Drive	iiilet					and 9					plate	plate			
144	130	12	10	12	12	12	10	10	1 3/16 -B		17/16 - A	12	1	_	-	14	1.5	
174	175	12	10	10	10	12	10	10	1 7/16-B		17/16 -A	12	_	_	_	17	2.8	
224	165	10	10	10	7	10	7	7	1 11/16-D		1 15/16 -A	7	_	_	_	45	13	
264	435	10	10	10	7	10	7	7	1 15/16-D		115/16 - A	7	_	_	_	77	30	
294	680	10	10	10	7	10	1/4	1/4	1 15/16-D		1 15/16 -B	7	_	_	_	85	42	
334	920	10	10	10	7	10	1/4	1/4	2 3/16-D		_	7	10	7	1/4	103	63	
364	1135	10	7	7	7	10	1/4	3/8	2 3/16 -E		_	7	10	7	1/4	115	86	
404	1340	7	_	7	7	7	1/4	3/8	2 7/16-E		_	7	7	1/4	1/4	126	114	
454	1830	7	_	7	7	7	1/4	3/8	2 11/16-E		_	1/4	7	1/4	1/4	256	294	
504	2205	7	_	7	7	7	1/4	3/8	2 15/16-E		_	1/4	7	1/4	1/4	287	423	
574	2955	7	_	7	7	7	1/4	3/8	2 15/16-E		_	1/4	7	1/4	3/8	338	630	
644	4665	1/4	_	1/4	1/4	7	3/8	3/8	3 7/16-E		_	1/4	1/4	1/4	3/8	552	1290	
714	5255	1/4	_	1/4	1/4	7	3/8	3/8	3 15/16-E		_	1/4	1/4	1/4	3/8	609	1744	
784	6440	1/4	_	1/4	1/4	7	3/8	3/8	3 15/16-E		_	1/4	1/4	1/4	3/8	860	2970	
854	8145	1/4	_	1/4	1/4	7	3/8	3/8	4 7/16-F		_	1/4	1/4	1/4	3/8	927	3800	

UNITARY BASE FOR ARRAGEMENT 1

DIMENSIONS (Inches)

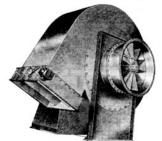
	AA				U	
	Unitray	Standard				Max.
Size	base	unitary	0	Min.	Max.	motor
	with	base		141111.	IVIUX.	frame
	isolation					
144	3*	3*	20½	40	45¼	256T
174	3*	3*	25	40¾	53	284T
224	3*	3*	30¾	44%	64½	286T
264	4†	4†	34½	49¼	73	324T
294	4†	4†	38	51½	76¾	326T
334	4†	4†	421/4	55¾	85%	364T
364	6	6	45%	58%	8813/16	365T
404	6	6	53	64	99¼	404T
454	6	6	57¼	67%	106	405T
504	6	6	62¼	69¾	114%	444T
574	8	6	68½	77	124¾	445T
644	8	6	74½	94	136¼	449T
714	8	6	80¾	104%	146½	449T
784	8	6	88	111¼	156¾	449T
854	8	6	95¼	117%	165%	449T

structural steel channel base integrates fan, motor and drive into one packaged unit... also available with spring or rubber - in - shear vibration isolation ...dimensions shown are maximums for unitary bases with out isolation... submit details to T.H for dimensions on unitary bases with isolation... buits - in motor rails furnished on all unitary bases ... down blast fan require special construction.

- *4" channel used for motors larger than 215 T.
- †6" channel used for motors larger than 286 T.

NOTE: Sizes 144 through 454 can be pre-assembled at factory and shipped as a unit at extra cost. Sizes 504 and larger must be assembled in the field

Tolerance $\pm \frac{1}{2}$



OPTIONAL ACCESSORIES OUTLET DAMPERS Standard outlet dampers are designed with blades operating in parallel.

For more uniform volume regulation, opposed blade dampers can also be furmished. INLET VANE DAMPERS Inlet vane dampers can be furmished to provide an effective means of reducing or regulating air flow when required. COOLING WHEELS Shaft mounted cooling wheels are available for fans handling gases exceeding 400 F -

DOWEN BLAST WITH INLET AIR REGULATING DAMPER

STRONG AIR IS OUR BUSINESS

Air Density Factors for Various Temperatures and Altitudes

AIR		ALTITUDE IN FEET ABOVE SEA LEVEL													
TEMP	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	15000	20000		
°F.					BAR	OMETRI	C PRESS	URE IN I	NCHES						
	29.92	28.86	27.82	26.81	25.84	24.89	23.98	23.09	22.22	21.38	20.58	16.88	13.75		
70	1.000	0.964	0.930	0.896	0.864	0.832	0.801	0.772	0.743	0.714	0.688	0.564	0.460		
100	0.946	0.912	0.880	0.848	0.818	0.787	0.758	0.730	0.703	0.676	0.651	0.534	0.435		
150	0.869	0.838	0.808	0.770	0.751	0.723	0.696	0.671	0.646	0.620	0.598	0.490	0.400		
200	0.803	0.774	0.747	0.720	0.694	0.688	0.643	0.620	0.596	0.573	0.552	0.453	0.369		
250	0.747	0.720	0.694	0.669	0.645	0.622	0.598	0.576	0.555	0.533	0.514	0.421	0.344		
300	0.697	0.672	0.648	0.624	0.604	0.580	0.558	0.538	0.518	0.498	0.480	0.393	0.321		
350	0.654	0.631	0.608	0.586	0.565	0.544	0.524	0.505	0.486	0.467	0.450	0.369	0.301		
400	0.616	0.594	0.573	0.552	0.532	0.513	0.493	0.476	0.458	0.440	0.424	0.347	0.283		
450	0.582	0.561	0.542	0.522	0.503	0.484	0.466	0.449	0.433	0.416	0.401	0.328	0.268		
500	0.552	0.532	0.513	0.495	0.477	0.459	0.442	0.426	0.410	0.394	0.380	0.311	0.254		
550	0.525	0.506	0.488	0.470	0.454	0.437	0.421	0.405	0.390	0.375	0.361	0.296	0.242		
600	0.500	0.482	0.465	0.448	0.432	0.413	0.400	0.386	0.372	0.352	0.344	0.282	0.230		
650	0.477	0.460	0.444	0.427	0.412	0.397	0.382	0.368	0.540	0.341	0.328	0.269	0.219		
700	0.457	0.441	0.425	0.410	0.395	0.380	0.366	0.353	0.340	0.326	0.315	0.258	0.210		
750	0.438	0.422	0.407	0.392	0.378	0.364	0.351	0.338	0.325	0.313	0.301	0.247	0.202		
800	0.421	0.406	0.391	0.377	0.363	0.350	0.337	0.325	0.313	0.300	0.289	0.237	0.194		
850	0.405	0.390	0.376	0.363	0.350	0.337	0.324	0.312	0.301	0.289	0.278	0.228	0.186		
900	0.390	0.376	0.362	0.349	0.337	0.324	0.312	0.301	0.290	0.278	0.268	0.220	0.179		
950	0.376	0.362	0.350	0.337	0.325	0.313	0.301	0.290	0.279	0.268	0.259	0.212	0.173		
1000	0.363	0.350	0.338	0.325	0.314	0.302	0.291	0.280	0.270	0.259	0.250	0.205	0.167		